Machine Learning

Machine Learning: The Art and Science of Algorithms that Make Sense of Data 1st Edition

This book started life in the Summer of 2008, when my employer, the University of Bristol, awarded me a one-year research fellowship. I decided to embark on writing a general introduction to machine learning, for two reasons. One was that there was scope for such a book, to complement themany more specialist texts that are available; the other was that through writing I would learn new things – after all, the best way to learn is to teach.

The challenge facing anyone attempting to write an introductory machine learning text is to do justice to the incredible richness of the machine learning field without losing sight of its unifying principles. Put too much emphasis on the diversity of the discipline and you risk ending up with a ‘cookbook’ without much coherence; stress your favourite paradigm too much and you may leave out too much of the other interesting stuff. Partly through a process of trial and error, I arrived at the approach embodied in the book, which is is to emphasise both unity and diversity: unity by separate treatment of tasks and features, both of which are common across any machine learning approach but are often taken for granted; and diversity through coverage of a wide range of logical, geometric and probabilistic models.

Leave a Reply

Your email address will not be published. Required fields are marked *


For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

I agree to these terms.